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NMRLAB is a toolbox for NMR data processing in MATLAB  different aspects of those requirements. NMRPIREhas a
(The Mathworks). MATLAB is a matrix-oriented high-level pro-  superb concept using UNIX pipes to exchange streams of dz
gramming environment vyhich gives access to fast algorithms fora  petween different processing steps. FELIX (Molecular Simu
large number of numerical tasks on many common computer 4iinns) and XWINNMR (Bruker) are highly professional com-
platforms. To take advantage of fast matrix operations in MAT- ial NMR processin ackages. Other NMR processir
LAB most processing commands in NMRLAB have been vector- mercia P 9 p 9 ‘. P
ized. Data processing can be achieved either by scripts or by a packages Sl_JCh as GIFR)( NMR Toolkit (3), and PROSA‘O
user-friendly command structure. An interface to WaveLab en- have been implemented by different NMR laboratories. Her
ables spectral denoising employing wavelet transforms. The use of We present NMRLAB, a MATLAB NMR data processing
wavelet denoising is demonstrated for one- and two-dimensional ~ toolbox. MATLAB, MATCOM (Mathtools), Octave, and
data.  © 2000 Academic Press SciLab are high-level programing languages which share
similar programing language and give access to an immen
number of numerical algorithms including fast Fourier trans
INTRODUCTION form, numerous matrix operations, solutions for eigenvalu

With the fast devel ¢ multi ional NMR problems, singular value decomposition, QR-decompositio
Ith the fast development of multidimensiona SP€Cnd various data fitting routines (Newton—-Raphson, Mal

troscopy the need for appropriate data. processing has gro rdt—Levenberg). MATLAB offers a complex compiler op-
accordlpgly. Modern NMR data processing mgst not only keg n, MATCOM is itself a compiler for MATLAB programs,
pace with NMR spectroscopy but also with signal processi d Octave and ScilLab are both open source implementatic

algorithms and computer technology. Scientific data analy%?QPEs using a MATLAB-like language
benefits from precise knowledge about processing algorithms i

. . S : ; An increasing number of MATLAB toolboxes is available
including their individual implementation and thus from access  \ MR data processing including several wavelet packags
to program sources. Even with source code available the re@d P g g P 9

o : . ; -(MATLAB wavelet toolbox, WavBox from Computational
ability of program sources is often impaired by the complexi . . .
. . S oolsmiths, Rice wavelet toolbox, UniWave and WavelLal
of the programming language. This problem is significantl

reduced in high-level languages which are often used in quae{ﬁi 6 toc_)lbox), signal processing toolboxes (MA.TLAB signal
o . . processing toolbox, various time-frequency signal analys
titative programming environments (QPEs). Because code dolboxes {, 8), data optimization, and statistical toolboxes

il I he impl i f P . . -
easily readable and because the implementation o programélvanced graphical tools are available in MATLAB and in

fast, QPEs have frequently been used to develop and .
algorithms. More recent versions of QPEs provide access D¢ add-on toolboxes. More repent versions of MATLAE
Ve easy access to a large selection of graphical functions. /

complex graphics combined with tools to build user interfacé . . )
and the possibility to interact with-€+ code. The possibility Important ad"a,”tage of QPEs is Fhat basic numencal alg
of linking code with other toolboxes is a paramount feature {bthms are mamtamed_ by numerical mathematics expert
build programs using state of the art algorithms for signg{MRLAB _has be_:en wr!tten t(_) run on any platform for which
processing and postprocessing data manipulation. An increX¢: THAB is available including popular personal computer

ing need for advanced processing and postprocessing scheRR&ating systems such as Microsoft Windows, LINUX (Fre

in NMR spectroscopy demands a highly flexible NMR pro_Software Foundation), Macintosh computers, and various fl
's of UNIX workstations.

cessing package with access to other toolboxes. Such a pfo~- > , o
gram, to be suitable for data processing and analysis in struc] "€ current version of MATLAB does not require the ini-
tural biology, must be combined with a user-friendly inten‘ac_(é-al'zat'On _Of variables and memory aIIo_catlon. This has th
and an intuitive command structure. inherent disadvantage that it is not possible to take advanta
In the past, NMR processing packages have concentrateoo(grﬁja_ta pointers to pass variables by reference. However, _|t
possible to allocate and free computer memory at the run-tin

! To whom correspondence should be addressed. of the QPE. The need for data pointers can often be circur
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EDP
NMR data sets in NMRDAT:
SET: 1 EXP: 1 NAME: CX NOESY | SER size: 0 0 | MAT size: 1024 1024 * P

TOTAL MEMORY: Matrices: 0, SER files: 1048576.

* current data set, P selected for plot

CURRENT DATA SET: 1,1.

(1) DIMENSION 1 (A) ABS Baseline correction.
(2) DIMENSION 2 (WN) Wavelet De_N_oise.

(3) DIMENSION 3 (Cz) Cadzow functicen.

(C) InCrementation Scheme. = = ———wsoo—oommmom—mmmmmmm
(D) Display current settings. (CS) Change current data set.
(G) Gibbs (first point times 0.5). (U) Update current data set.
(M) SMooth FID. (SP) Save parameters.

(B) Baseline correction (bc) (SA) Save to all EXP in SET.
(P) Phase correction. 00 —ommmomomo o
(L) Linear Prediction. (H) HELP.

(R) Referencing. (0) Quit and Save.

(S) Strip Transform. (X) Exit without save.

(RM) Revert matrix. (K) Keyboard shell.

(W) Window function.
(2) ZeroFilling.

—— e e — e — DIM 1 —--—m————————mm s e
NMRLAB:>

FIG. 1. EDP setup routine.

vented by using global (or persistent) variables. Performaneép andxfb keeps track of the complete processing history

penalties of QPEs are compensated by highly optimized algoidp contains routines to reference heteronuclear spectra usi

rithms combined with the possibility of compiling and optiparameters determined by Wishaitt al. (13) for calculating

mizing source code. N and *C chemical shift references from a temperature
dependent proton chemical shift reference.

METHODS Processing functions. All NMR processing functions in
NMRLAB will automatically perform the same task on all
Concepts. The core of NMRLAB is a collection of NMR columns of a two-dimensional data matrix. Table 1 provides
data processing routines. The basic structure of any processiogiprehensive list of the processing commands in the curre
command is matrix, = function(matrix,, parameters). This version of NMRLAB. Most data processing functions have
requires that the two matrices, matnd mag,, must be held in numerous options which are documented in their header (c
the computer memory (RAM) at one time. In the case afessible by thenelp function in MATLAB). Usually a vec-
three-dimensional (3D) data a minimum of one 3D matrix plusrized design employing matrix operations on the complet
two two-dimensional slices must be kept in RAM. For imiwo-dimensional data matrix has been implemented. For e
proved performance NMRLAB can be set up to perform 3Bmple,wdwf2 calculates a window function which is subse-
matrix predominantly in RAM without swapping to disk. For equently applied in one step to the entire input matrix. This i
2D NOESY spectrum with 102% 1024 complex data points, achieved by creating an intermediate matrix with identice
2 X 10° X 8 bytes= 16 MB of RAM must be allocated for copies of the window function in all matrix columns the same
double precision variables. For data storage a typecast to sirgjle as the source data matrix which is then multiplied point b
precision can save disk space. point (MATLAB notation: mag,, = mat, - Wdw,.x). This type
Although all processing commands are fully scriptable tha&f calculation requires enough memory for two 2D matrice:
typical usage will be through a setup routirelp = edit data and has been used for phase correction, DC offset correcti
processing parameters) followed byfb (execute Fourier (bc), data shifts {1sh, crsh, 1sh, rsh), and phase
transform—and associated processing commands—in both abrection. With sufficient amounts of memory available suc
mensions of a two-dimensional data set). Figure 1 shows tmatrix calculations are fast owing to internal optimizations o
starting screen ofdp with typical processing parameters suclhe QPEs. Some processing functions take direct advantage
as phase incrementation schemes (TPWP| $tates 10), Stat- vectorized routines in the QPE such as fast discrete Fouri
es—TPPI 11), and echo-antiecho sensitivity-enhancd®) ( transform ¢ft, ift), which is implemented in MATLAB 5
data), apodization functions, linear prediction, and baselias a radix-2 fast Fourier transform algorithm, singular valu
correction. Some functions allow different choices for phaskecomposition, or polynomial fitting. The computational spee
deconvolution of digitally filtered data as is common on Brukesf vectorized routines in MATLAB is demonstrated by a fas
spectrometers where the FID in the fast dimension is precedealrier transform of a 1024 1200 point matrix which is
by a filter function.Edp contains setup routines for all pro-accomplished in 2.7 s and a phase correction of the sar
cessing functions of NMRLAB. Automatic processing usingnatrix which requires 12.4 s with a preceeding Hilbert trans
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TABLE 1 by Kumaresan and Tuftslf) employing singular value de-
NMR Processing Functions in NMRLAB composition, root reflection, and mixing of forward—backwarec
LP as proposed by Zhu and Ba%6j. The linear prediction

Function Description routine (Lpsvd) can display complex roots for forward and
hft Hilbert transform backward linear prediction and complex roots after root reflec
fft® Fast Fourier transform tion and mixing. Linear prediction can also be achieved en
ifts Inverse fast Fourier transform ploying functions in the MATLAB signal processing toolbox.
dft Fourier trqnsform of Bruker digital filtered data Lpc (17) uses the maximum entropy method for spectra
it Real Fourier transform for TPPI-type data estimation and calls the Levinson recursion. It is much faste
smo Smooth= polynomial solvent filter 29) . . . ..
sol Solvent filter by time-domain convolutior8Q) than singular value decomposition-based linear prediction ai
wdwf2 Window functions (gm, em, sine bell, cubic sine bell) produces good results for common NMR data sets. Similar
flatten2 FLATT baseline correctionl@) (usesflattent and 1psvd the predicted signal discriminates signal against nois

. chi2_flatt) Prony’s method 18) and an extension by Steiglitz and
zizi*ﬂatt gg:lcl;féeszmi :fggfj:;fﬁ:g;me flattening (calls  MCBride (19) are also available in MATLAB. Both methods

flatten2) tend to fail for decaying periodic data and should only be use
lpsvd2 SVD-based linear predictiorl$, 16 for constant time data.
1px2 Linear prediction (LPC, Prony, or Steiglitz—McBride) Cadzow is a powerful filter technique which can be used tc
rev Reverse data denoise spectr&2(). It will create a matrix with Hankel struc-
Ziii g::ﬁﬂ::: zm 'rfétht ture from the free induction decay, perform a singular valu
<hl Shift left decomposition, and resynthesize the FID by picking a use
shr Shift right specified number of singular values (the number of wante
revm Reverse data in one dimension signals). By selecting the largest singular values noise is r
revm2 Reverse matrix in both dimensions jected. After two to three cycles an almost noise-free spectru
Fransm Tri]ni/‘l)ﬁi /;eB‘;" or complex matrix (same as cransposg gyained. It has been shown that this technique is useful
phase Phase vector or matrix (called by uiphase) remove noise fronin vivo spectra with a limited number of
strip Cut a strip out of a matrix peaks 21). The Cadzow algorithm has recently been used t
cadzow?2 Perform cadzow algorithm on a two-dimensional matrixremove large diagonal peaks from NOESY or TOCSY specti

by removing the largest singular values before the reconstru
tion of the data 22).

A series of functions which are applied to the FiDivf£2 ,
smo, andbc) have special modes for digital data originating
form and 6.8 s for the actual phase correction on a 400-MHDm Bruker spectrometers where a filter function preceeds tt
AMD personal computer with 128 MB of RAM running theactual data points of the FID. If these points are simply omit
Linux operating system (kernel version 2.2). Complete twded, “frowns” or “smiles” are introduced at the edge of the
dimensional processing of the same data matrix employisgectrum. If a polynomial is fitted to the FID and later sub
polynomial smoothing with a polynome of ninth order on thé&racted to remove on-resonance solvent peaks], artifacts
free induction decays (FIDs) in the fast dimension, a cubic singay be introduced if the negative time filter points are nc
bell apodization function in each dimension, and phase correxcluded. For this reasatmo, sol, andbc, which subtract
tion in either dimension is completed in 105 s on the sanaeconstant from all FIDs to remove DC offsets, exclude th
computer, without the polynomial smoothing in 51 s. digital filter from the calculation. A similar problem arises for

Although all functions in NMRLAB are written to be ap-the window function. Frequently the filter is moved to the enc
plied to two-dimensional matrices some cannot be vectorizetithe FID by a circular left shift{sh1) before the window
because data fitting is involvedrfo, flattent) or because function is applied. Depending on the type of window functior
the one-dimensional operation requires internal matrix opetais procedure will also eliminate the filter and cause artifact
tions. For example they? calculation of flatt (14) atthe edge of the spectrum. The alternative where the windc
(chi2_flatt) requires a matrix operation to calculateyd function is applied to the original FID including the digital
vector in one step for a single line of the spectrum. In contraiiter as negative time data points alters the window functio
to the original publicationi4) we calculate the actual baselingparameters. NMRLAB offers two additional modes which are
preferentially by a polynomial fit to the baseline points rathatepicted in Fig. 2. Either the filter can be omitted from the
than a Fourier series because the use of a Fourier series hadralow function or the digital filter points can be treated a:
tendency to cause artifacts as a consequence of its periodiaitggative time data points.

For zero-filled data an extra optiorfact) uses a reduced 3D processing is accomplished by processing of series of 2
number of data points to calculate baseline points. data sets. After the first two dimensions have been process

Linear prediction was implemented as originally describetie matrix is transposed to process the third dimension as

#MATLAB built-in function.
® Requires MATLAB signal processing toolbox.
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with intermediate swapping of 2D slices, where the RAM fol
one 3D matrix plus that for two 2D slices is sufficient. Wher
3D matrix processing is set up #lp the actual processing can
be achieved employing f (three-dimensional Fourier trans-
form) which will automatically transpose the 3D matrix after
processing the first two dimensions and return the final matr
in a 213 orientation suitable to display 12 slices.

Wavelet transform filters. NMRLAB gives access to wave-
let transform (WT)-based noise suppression techniques usi
routines from the WavelLab toolbo%) WT-based denoising
is performed by a forward WT of the processed real data, tt
application of a filter, and a backward wavelet transforn
(IWT). The WT can be one- or two-dimensional. Optionally
one can perform a noise normalization prior to the first WT. Ii
the case of 2D and 3D matrices an average noise level must
calculated for the entire matrix. NMRLAB allows the choice of
a wavelet transform (periodized orthogonal or translation ir
variant), a wavelet (Haar, Beylkin, Coiflet, Daubechies
Symmlet, Vaidyanathan), a threshold shrinkage techniqt
- (Visu, SURE, Hybrid, MinMax, MAD, Hard, Soft), and a

series of parameters and options which are described in
number of publications associated with the WaveLab toolbc
(5, 6). Good default values are supplied with the setup routin
edp. Wavelet shrinkage can be applied at the enet®f or
as a separate step after completed processing. Figure 3 she
two sections from a noisy’N—'H HSQC spectrum of the
N-terminal SH2 domain of the p85 subunit of Pi8nase (p85
N-SH2) before (left) and after (right) WT shrinkage. Both
spectra were first subject to a cubic sine bell apodization |
° W w W e w we both dimensions. Although wavelet shrinkage can be applie

FIG. 2. Modes for an exponential window function for digitally filtered Without a preceeding window function a cubic sine bell prior tc
data from BRUKER spectrometers. Dots, FID before application of the winvavelet shrinkage may be necessary to avoid truncation ar
d(_)w function;‘soli_d Iine,_FID after application oft_h_e Wir_]dowfu_nction. Top, Fhffacts. The results of a two-dimensional wavelet shrinkage a
window function is applied to the FID and the digital filter; middle, the d'g'.t%irnilar to those obtained for a one-dimensional wavelet filte
filter has been excluded; bottom, a negative time axis is used for the digifal . . . .
filter. applied to each row of the matrix. The two-dimensional ap
proach is much faster (18 s compared to 38 s for the 1D mo
for a 512X 512 point matrix) but limited to square matrices.

series of 2D matrices. FELIX and XWINNMR use a matrixNoise reduction achieved by WT is superior to that obtained k
format with small submatrices for equally fast access to a@py window function without the disadvantage of additiona
vector or plane of a 3D matrix. Similar to NMRPIPE, NMR-line broadening. This is particularly useful for noisy spectr:
LAB works on series of 2D matrices which are accessdptained for low-concentration protein samples in SAR (struc
directly as 2D planes and may be combined to a MATLAB 3ture activity relationship) by NMR studies2). Wavelet

matrix. To access XZ or YZ planes the 3D matrix must bghrinkage can also be combined with resolution enhanceme
transposed. Because matrix transposition is not defined for Biyure 4 depicts a 1PN HSQC of p85 N-SH2 processed with
matrices slices of 2D matrices must be extracted for mathfferent options for resolution enhancement and noise redu
transposition. The orientation of 3D matrices is altered byt#®n. The FID corresponding to spectrum A has been subject:
flexible user interface syztranspose) which is a user to strong Gaussian broadening (=B—15 Hz, GB= 0.15) to

interface for the function ranspose3d which calculates the resolve shoulders in peaks with a low signal-to-noise rati
actual matrix transpositiorkyzop determines the transposi-(arrow). The spectrum in Fig. 4B shows the same spectru
tion (12, 13, or 23) which is required to get from one to angrocessed without any apodization prior to wavelet denoisir
other matrix orientation (123, 132, 231, 213, 312, or 321yith a symmlet 8), a periodized orthogonal WT, and soft
Matrix transpositions can either be calculated in RAM, whicthresholding. The resulting spectrum is almost free of nois
requires sufficient amounts of memory for two 3D matrices, @nd shows all peaks with poor resolution. Figure 4C shows tt
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FIG. 3. Left, stack plot of @°*N-HSQC-spectrum of p85 N-SH2 processed with a cubic sinebell apodization in both dimensions. Right, same spectrum t
with wavelet denoising (two-dimensional orthogonal wavelet transform, symmlet-8 wavelet, hard-thresholding, automatic normalizationlaiwhaafithe
noise level, i.e., thresholg V2 - log(n) with n = the length of a matrix row).

result of a combination of both approaches, i.e., the FID hhack-WT. The resulting signal is subtracted from the origine
been subjected to strong Gaussian broadening and the (r&l).

spectrum has been treated with a wavelet filter. The effect of

resolution enhancement has now been achieved at a verfpraphical routines. NMRLAB provides a graphical inter-
modest loss of signal-to-noise. Another application of wavelt&ce to plot 2D matricesu(i cont). It is possible to step from
transform filters isvavwat, which will remove on-resonancesslice to slice in 3D matrices or series of data sets obtained f

water signals similar tasmo. Wavwat will apply a forward SAR by NMR. Multiple rows or columns from 2D data sets
WT to the FID followed by a high threshold shrinkage andan be picked for phase correction employing a graphic

A

I 1 \ I ; 1 I L
13 12 11 10 9 8 7 6 5 4
B

T T T T T T T T

] L j 1 i i | I
13 12 11 10 9 8 7 6 5 4
C

T T T T T T T T

i | . | L I I |
13 12 i1 10 9 8 7 6 5 4

ppm

FIG. 4. “N-filtered 1D-HSQC of p85 N-SH2 processed with different options. (A) Gaussian broadening (G5, LB = 0.15); (B) Application of a wavelet
filter employing a Symmlet (8) wavelet and a periodized, orthogonal wavelet transform with a soft thresholding filter (tt# dbg(n) with n = 512 = number
of data points in spectrum). No preceeding apodization function. (C) Gaussian apodization (as in A) followed by wavelet shrinkage (as in C).
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TABLE 2 data setTf is a similar tool for 3D data processing. Baseline
Fields in NMRDAT correction, phasing, and wavelet noise reduction can be either
of the general processing usiagb (xfall or tf) or alterna-

ACQUS 2/3D array of structures Acquisition parameters: - - .
PROC 2/3D array of structures Processing parameterislvely in & postprocessing stepi{sc. phase. denoise).
DISP Structure Display parameters

SER 2D matrix Raw data DISCUSSION

MAT 2D matrix Processed data

NMRLAB is a collection of tools which gives NMR users
access to the world of MATLAB functions and toolboxes.
) ) o NMR data processing in a QPE has many advantages. F
phasing routine (iphase). For peak picking in crowded gcjentific applications the most important point is probably th
spectral series obtained by ligand titrations a graphical pe%h flexibility of such systems. The performance of NMR
picking routine gartitr) is available which plots superim- processing in NMRLAB is comparable to that of other NMR

posed series of spectra and allows the user to step frim,cessing software packages and sometimes faster where |

spectrum to spectrum to pick peaks. Peak identification 48 computations can be performed. Optimizations for pro

greatly facilitated py coloring schemes Which'hellp to distinguis&bssing of spectral series make NMRLAB a powerful tool fo
different spectra in a spectral series and highlight the Cu”‘?mbcessing and interpretation of spectral series obtained

spectrum. Peaks lists and lists of chemical shift perturbances egr by NMR studies. With increasing amounts of compute
be generated and stored as ASCII or as spreadsheet files. memory the concept of data processing in the computer mel

Data formats and control functions.NMRDAT is the cen- ory will become the method of choice.
tral pOOl of information and data in NMRLAB. Technically it is A|though wavelet transformations have been used for yea
a two-dimensional array of structures (NMRDAT(SET,EXP)h geosciences and various fields of electronic signal proces
which holds dataetsin the first andexperimentsn the second ing and transmission there have been few applications to NM
dimension. A data set can be one or multiple 2D spectra. TRisectra 26). There are many applications of wavelet trans
concept was originally designed to process411) and ac- forms including frequency identification, noise reduction, an

cess series of HSQC spectra in SAR by NMR or relaxatiafata compression which may be useful for NMR spectroscop
experiments. Within one data set all experiments can be pro-

cessed with identical parameters. The same concept is also

used to process three-dimensional data sets where slices of the TABLE 3
3D d_ata sgt are stored as e.xperiments of one set. Table 2 lists Control Functions in NMRLAB
the fields in NMRDAT. All fields are accessible on the com=
mand line or with the aid obrowse which can list, manip- Function Description
ulate, save, import, export, and load data sets. The contents andl . MATLAB scriot fo Setub parameters for
data sizes of all data sets and experiments together with the NMRLAB P PP
total amount of used memory can be listedddyownmrdat .. Read raw data from disk
(=snd). For large data sets there are optional tools to swapiist Read series of experiments
data to disk éwapser, swapmat). The processing com- readser Read Bruker ser files '
mands (gfb, xf2, xf1, and tf) and the contour plOt readacqus Read parameters from Bruker ser file
. . . . . shownmrdat = Show data sets and sizes in NMRDAT

routineuicont recognize swapped fields and load their con- __,
tents into RAM if necessary. Internal data storage in NMRLAB; 1,4 5¢ Interactive phase correction
depends too much on advanced data structures on MATLAB®tocont Interactive contour plotting
be compatible with Octave. However, the core processimgrritr Analyze series of 2D NMR spectra (e.g., SAR by
routines (Table 1) will run in Octave and with few changes in NMR series)
S L b edp Edit processing parameters

ciLab. . . . edd Edit display parameters

Two- and three-dimensional matrices can be exported to the ,<e Browse, edit, save, export, and load NMRDAT
NMRPIPE () and NMRVIEW @4) file format. This format contents
can be read by major assignment programs such as NMRVIEWp Process two-dimensional data

Process series of 2D data sets (e.g., SAR by
NMR series)
Process three-dimensional data

and PRONTO 25). Import programs are currently available<f211
for NMRPIPE and FELIX. A series of commands has been.

written to access processing and display parametgrs and.fo. 2D/3D postprocessing baseline correction
process 2D and 3D data (Table 8dp andedd are simple denocise 2D/3D postprocessing wavelet denoising
tools to edit processing and display parameters, respectivelyztranspose Transpose 3D structures

Both have options to initialize data setstb will process one Xyiop Bﬁﬁfy"?é"frézgsﬁorii :t?élTI]D fgr é%(gr:ata sets
i i ; . . m s
experimentxfal1l will process a series of experiments in oné”“=°"* Y P
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TABLE 4 where only the coefficients (in absolute value) greater than
Wavelet Shrinkage Parameters in NMRLAB are included and their absolute values are reduced by
amount equal to the threshold. Both techniques yield goc

amf_type Wavelet type Haar, Beylkin,Coiflet, Symmlet,  yicq requction for one- and two-dimensional NMR data. |
(quadrature mirror DaubechiesyVaidyanathan . L. ..
filter) either case it is a fundamental prerequisite that the data ha
par QMF paramater Coiflet: 1-8)( Daubechies: 4, been scaled with respect to their noise level. Donoho ar
6, 8,10, 12, 14, 16, 18, 20. Johnstone suggest two methods to select the threshold valu
) ek Sé'mm:ft: 4-109). i minmaxthreshold which involves the calculation ofL4 risk
thr_type Type of shrinkage Hal\;iﬁnj(;xisn;fgl Hybrid, anduniversalthresholding whera = \/2 logn (n = number
L Low-frequency Must be<J, N = 27 (2-4) of data points). The latter method has become very commc
cutoff for N = number of data points ~ for global thresholding and provides good results for NMF
shrinkage. data noise reduction.
”Ofma“{é‘f Normalize noise odized orth | A vast volume of literature has been devoted to more ac
WT_typ Periodized orthogonal vanced techniques for nonuniversal threshold selection. TI
fully translation invariant . . - .
thr Threshold value Universal\V/og(n) most popular scheme of this type is SURE (Stein’s Unbiase

n = number of data points.  Risk Estimate) thresholding which has also been introduced |
Donoho and Johnston28&), where a different threshold value
Note. Parameters which yield good results for most NMR spectra ajg selected for each wavelet level. We found that SURE thres

italicized. . -
@ 2D and 3D versions of normalization have been implemented in NMRLA&ldmg does not perform well for noisy NMR data where the

® Other wavelet transforms (i.e., the Meyer wt) are available in WaveLalmalomy of Wavelet_ coefficients 'S. essent'a”y Zero .("e" th
wavelet representation of the data is very sparse). This proble

is usually addressed by a hybrid mechanism which defaults
The availability of fast algorithms for one- and two-dimenIhe universal threshol’ 2 log n when the coefficient matrix is

sional wavelet transforms enables routine application of waJ/@und to be sparse (*hybrid method”) and otherwise use
let transforms from a computational point of view. One reasor?RE thresholding. N

to use wavelet denoising carefully is the inherent danger to!n addition to the choice of wavelet parameters, denoisin
introduce artifacts, particularly when 20-30 parameters mJ&" be accomplished by two-dimensional wavelet transforn
be chosen by the operator. NMRLAB is an approach to intr@" the two-dimensional data matrix or by applying a one
duce wavelet denoising strategies for routine use in NM@Mensional wavelet transform row by row to the entire spec
spectroscopy by providing a user-friendly interface for a wav&Um- The two-dimensional approach is significantly faster bt
let toolbox and default parameters which will yield satisfactoryMited to quadratic matrices and prone to introduce artifact
results in most cases. The preservation of lineshapes andSHch as small negative distortions next to the peaks in tf
tensities during wavelet denoising enables the combinatiRectrum. With one-dimensional wavelet transforms we foun
with resolution enhancement (Fig. 4). Wavelet transform filtef@at soft thresholding yields lower residual noise than har

also help to reduce noise in spectra recorded with low amouft§esholding. o
of protein sample and few scans. The availability of NMR processing in MATLAB should

Table 4 lists the most important wavelet parameters. TRECOUrage spectroscopists to explore the world of advanc
major choices are the wavelet type and the noise reducti®l§n@! Processing. The availability of sources is in our eye
technique. We have found that symmlets, coiflets, and Dagfucial to produce reproducable results using sophisticats

bechies wavelets are good choices for NMR noise reducticiignal processing algorithms. For this reason NMRLAB i
The basis of noise reduction is the search for the largest “trfistributed as an open source system and is available by int

wavelet coefficients. A hard thresholdin§ function, net at http://www.bpc.uni-frankfurt.dedmrlab.
5H(x) = {x, if [x| > A REFERENCES
X) = o, if |X| <N 1. F. Delaglio, S. Grzesiek, G. Vuister, G. Zhu, J. Pfeifer, and A. Bax,

J. Biomol. NMR 6(3), 277-293 (1995).
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